Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin Zhuo,^{a,b} Zuo-Wei Wang,^b Yi-Zhi Li^b and He-Gen Zheng^b*

^aThe Photoelectric Chemistry Laboratory, Suzhou College, Suzhou 234000, People's Republic of China, and ^bCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: zhenghg@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.004 Å R factor = 0.028 wR factor = 0.075 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Poly[[(2,2'-bipyridine- $\kappa^2 N:N'$)cadmium(II)]- μ_3 -5-hydroxyisophthalato- $\kappa^4 O,O':O'':O'''$]

In the molecule of the title compound, $[Cd(C_8H_4O_5)-(C_{10}H_8N_2)]_n$, the Cd atom is coordinated by two N and four O atoms of 2,2'-bipyridine and hydroxyisophthalate ligands, respectively, in a highly distorted octahedral geometry. 5-Hydroxyisophthalate acts as a tetradentate ligand, with one carboxylate group bidentate to one Cd atom and the other carboxylate group bidentate to two further Cd atoms, resulting in the formation of two-dimensional sheets.

Comment

The design and syntheses of supramolecular coordination polymer networks, especially those constructed *via* hydrogen bonding and π - π stacking interactions, has been a field of rapid growth because of their fascinating structures and promising applications in functional materials (Barton *et al.*, 1999; Chen *et al.*, 2005; Biradha *et al.*, 2000). The coordination chemistry of aromatic polycarboxylate transition metal complexes has received considerable attention due to the variety of bridging modes of polycarboxylates in the formation of porous frameworks (Mori *et al.*, 1997; Chui *et al.*, 1999; Lo *et al.*, 2000).

Encouraged by our successful synthesis of coordination polymers using transition metals, 3-sulfobenzoic acid and 2,2'bipyridine (Li *et al.*, 2005), we investigated the effect of replacing 3-sulfobenzoic acid with 5-hydroxyisophthalic acid. 5-Hydroxyisophthalic acid, $OH-H_2BDC$, like benzene-1,3,5tricarboxylic acid, has two carboxylic acid groups arranged *meta* to each other, but with a phenol hydroxy group *meta* to both. This phenol hydroxy group was intended as a mimic for the third carboxy group, which remains protonated in other reported layered polymers (Plater *et al.*, 1999; Cao *et al.*, 2004). The title complex, (I), was obtained by the hydrothermal reaction of $OH-H_2BDC$ with cadmium acetate and 2,2'bipyidine, as a colorless solid in 60% yield.

In (I), each Cd^{II} cation has a six-coordinate environment consisting of four carboxylate O atoms from three 5-hydroxyisophthalate anions and two N atoms from a 2,2'-bipyridine molecule (Fig. 1). The geometry around the Cd^{II} cation is distorted octahedral, with Cd-O and Cd-N distances in the ranges 2.2374 (18)–2.528 (2) and 2.334 (2)–

Received 3 March 2006 Accepted 10 March 2006

Acta Cryst. (2006). E62, m785-m787

All rights reserved

© 2006 International Union of Crystallography

Figure 1

A segment of the structure with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (a) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (b) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z;$ (c) $\frac{3}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z;$ (d) 1 - x, 2 - y, -z; (e) $-\frac{1}{2} + x,$ $-y, -\frac{1}{2} + z.$]

A view of the title complex, showing how the organization of the three different subrings contribute to the construction of the [Cd(OH- H_2BDC]_n two-dimensional network. The three different subrings are labelled A, B and C.

2.370 (2) Å, respectively. The 2,2'-bipyridine ligand acts as a terminal ligand and the 5-hydroxyisophthalate anion functions as a tetradentate ligand, with one carboxylate group bidentate to one Cd atom and the other carboxylate bidentate to two further Cd atoms. As illustrated in Fig. 2, the OH-H₂BDC ligands link the cadmium centres in different ways to produce three different subrings.

The two-dimensional network of $[Cd(OH-H_2BDC)]_n$ units also contains an intermolecular O-H···O hydrogen bond (Table 2) and can be envisaged as being built up from interlocking 18-, 15- and 8-membered rings. The two-dimensional $[Cd(OH-H_2BDC)(2,2'-bipyridine)]_n$ layers are assembled into a three-dimensional framework via π - π stacking interactions.

Experimental

A mixture of CdSO₄ (0.021 g, 0.1 mmol), 5-hydroxyisophthalic acid (99%, 0.1 mmol), 2,2'-bipyridine (0.016 g, 0.1 mmol) and NaOH (0.008 g, 0.2 mmol) in H₂O (10 ml) was placed in a Parr Teflon-lined stainless steel vessel (23 ml), sealed and heated at 438 K for 3 d. The mixture was then cooled slowly to room temperature. Colourless crystals were obtained (yield 0.013 g, 60%, m.p. 503-504 K).

Crystal data

$[Cd(C_8H_4O_5)(C_{10}H_8N_2)]$	$D_x = 1.802 \text{ Mg m}^{-3}$
$M_r = 448.71$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3248
a = 10.754 (3) Å	reflections
b = 10.073 (2) Å	$\theta = 2.0-26.0^{\circ}$
c = 15.911 (4) Å	$\mu = 1.35 \text{ mm}^{-1}$
$\beta = 106.308 \ (4)^{\circ}$	T = 293 (2) K
V = 1654.2 (7) Å ³	Block, colourless
Z = 4	$0.30 \times 0.25 \times 0.20 \text{ mm}$

3248 independent reflections

 $R_{\rm int} = 0.061$ $\theta_{\rm max} = 26.0^{\circ}$

 $h = -10 \rightarrow 13$

 $k = -11 \rightarrow 12$

 $l = -18 \rightarrow 19$

2987 reflections with $I > 2\sigma(I)$

Data collection

- Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
- Absorption correction: multi-scan (SADABS; Sheldrick, 2002a) $T_{\rm min} = 0.67, \ T_{\rm max} = 0.76$
- 7126 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0433P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 0.5583P]
$wR(F^2) = 0.075$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
3248 reflections	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.70 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL
	Extinction coefficient: 0.003

Table 1

Selected geometric parameters (Å, °).

Cd1-O2 ⁱ	2.2374 (18)	Cd1-N1	2.370 (2)
Cd1-O4	2.2872 (18)	Cd1-O3	2.528 (2)
Cd1-O1 ⁱⁱ	2.3259 (18)	O1-Cd1 ⁱⁱⁱ	2.3259 (18)
Cd1-N2	2.334 (2)	O2-Cd1 ^{iv}	2.2374 (18)
$O2^{i}-Cd1-O4$	151.08 (7)	O4-Cd1-O3	53.60 (6)
$O2^{i}-Cd1-O1^{ii}$	100.29 (7)	O1 ⁱⁱ -Cd1-O3	117.79 (6)
$O4-Cd1-O1^{ii}$	82.04 (6)	N2-Cd1-O3	148.23 (7)
O2 ⁱ -Cd1-N2	93.41 (7)	N1-Cd1-O3	82.40 (8)
O4-Cd1-N2	115.50 (7)	O2 ⁱ -Cd1-C17	126.51 (8)
O1 ⁱⁱ -Cd1-N2	85.92 (7)	O4-Cd1-C17	26.76 (7)
O2 ⁱ -Cd1-N1	90.71 (8)	O1 ⁱⁱ -Cd1-C17	98.64 (7)
O4-Cd1-N1	99.68 (8)	N2-Cd1-C17	137.57 (8)
O1 ⁱⁱ -Cd1-N1	153.81 (8)	N1-Cd1-C17	93.56 (8)
N2-Cd1-N1	69.63 (8)	O3-Cd1-C17	27.06 (7)
$O2^{i}-Cd1-O3$	101.94 (7)		
Symmetry codes:	(i) $x - \frac{1}{2}, -y + \frac{3}{2}, z$	$x - \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y + \frac{3}{2}$	$-\frac{1}{2}, -z + \frac{1}{2};$ (iii)

 $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5-H5···O3 ⁱⁱ	0.82	1.88	2.677 (3)	165
C	. 3 . 1	. 1		

Symmetry code: (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

H atoms were positioned geometrically, with O-H = 0.82 Å and C-H = 0.93 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2002*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation (grant Nos. 20171020 and 20571039).

References

- Barton, T. J., Bull, L. M., Klemperer, W. G., Loy, D. A., McEnaney, B., Misono, M., Monson, P. A., Pez, G., Scherer, G. W., Vartuli, J. C. & Yaghi, O. M. (1999). *Chem. Mater.* **11**, 2633–2656.
- Biradha, K., Hongo, Y. & Fujita, M. (2000). Angew. Chem. Int. Ed. 39, 3843–3845.

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, X.-Y., Zhang, J., Kang, Y., Cheng, J.-K., Li, Z.-J., Wang, X.-Q., Wen, Y.-H. & Yao, Y.-G. (2004). Acta Cryst. C60, m350–m352.
- Chen, B., Ockwig, N. N., Millward, A. R., Contreras, D. S. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4745–4749.
- Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.
- Li, W.-G., Wang, Z.-W., Cai, Y., Xu,Z.-J., Li, Y.-Z. & Zheng, H.-G. (2005). Chin. J. Inorg. Chem. 21, 1857–1860.
- Lo, S. M.-F., Chui, S. S.-Y., Shek, L.-Y., Lin, Z.-Y., Zhang, X. X., Wen, G.-H. & Williams, I. D. (2000). J. Am. Chem. Soc. 122, 6293–6294.
- Mori, W., Inoue, F., Yoshida, K., Nakayama, H., Takamizawa, S. & Kishita, M. (1997). Chem. Lett. 12, 1219–1220.
- Plater, M. J., Foreman, M. R. St. J., Coronado, E., Gomez-Garcia, C. J. & Slawin, A. M. Z. (1999). J. Chem. Soc. Dalton Trans. pp, 4209–4216.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002a). SADABS (Version 2.03). University of Göttingen, Germany.
- Sheldrick, G. M. (2002a). SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.